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A necessary condition for linear stability of steady inviscid helical gas flows is found 
by the generalized progressing-wave expansion method. The criterion obtained is 
compared with the known Richardson number criteria giving sufficient conditions for 
stability. 

1. Introduction 
The stability of steady inviscid helical flows in an incompressible fluid has previously 

been studied by Howard & Gupta (1962) and others. More recently the same problem 
has been studied for inviscid compressible fluids by Howard (1973), Gans (1975) and 
Warren ( 1975). These authors obtained sufficient conditions for stability under 
various restrictions. 

In  this paper we study the problem considered by Warren (1975). By a different 
method we obtain a criterion giving necessary conditions for linear stability of the 
flows. Our method is based on the generalized progressing-wave expansion method 
described by Friedlander (1958) and Ludwig (1960). In  fact, it is shown by Eckhoff 
(1975) that necessary conditions for stability may be obtained by investigating the 
stability properties of the leading terms in such expansions. A brief description of the 
generalized wave expansion method and its application to stability problems is given 
in an appendix. 

As should be expected, it is possible to show that the known criteria giving sufficient 
conditions for stability are more restrictive in general than the criterion we obtain, 
which gives necessary conditions for stability. However, the criteria are shown to 
coincide in some cases; thus conditions which are both necessary and sufficient for 
stability are established for these cases. 

2. The basic equations 
The fundamental equations are 

a v l a t  + V .  V V  = -p-'Vp + V V ,  

a p / a t + v . v p + p v . v  = 0, 

qpp-qpt  + v . V(pp-7 )  = 0, 

( 2 . l a )  

( 2 . l b )  

(2 . l c )  
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where v denotes the velocity, p the density, p the pressure, V a giTren potential for the 
external forces acting on the fluid and y is a constant. 

We let ( r ,  9, z )  denote cylindrical co-ordinates where the z axis coincides with the 
axis of the two coaxial circular cylinders (radii a and b, 0 < a < b )  between which the 
flow occurs. The assumption a > 0 is introduced here only to avoid the singularities 
on the axia caused by the cylindrical co-ordinates. The results we obtain are in fact 
also valid when the inner cylinder is absent, The potential for the external forces is 
assumed to depend on r only, i.e. V = V(r) .  The basic flow may then be written a8 

v = v o w  d +w, ( r ) f ,  P = pow, P = Po(r). (2.2) 

Here v,, w, and po may be chosen arbitrarily and p ,  is then determined to within an 
arbitrary additive constant by 

where a prime denotes differentiation with respect to r .  

introducing into (2.1) the following expressions: 

(2.3) p; = po(r-lv; + V') ,  

In  order to study the stability properties of the basic flow (2.2), we perturb it by 

v = p,* u, P + (poi u$j + VO) + + (pi? u, + w,) f , 
P = Po +COIPB(~l + sz), 4 (2.4) 

P = Po + COP0 82 .  

Here co = (ypo/po)l  denotes the local sound speed a n d o  = {u,, u+, u,, sl, s2} represents 
the perturbation superimposed on the basic flow (2.2). The transformation (2.4) is 
analogous to transformations considered earlier by various authors (see Eckart 1960, 
p. 55; Yih 1965, p. 5). By substituting (2.4) into (2.1), the linearized equations for 
the perturbations are found to be 

Here w is treated as a column vector and the coefficient matrices are 

r-lv, 0 

o o o o c ,  r-lvo 0 0 0 

0 0 0 0 0  r-lv, 0 0 

0 r-lv, 0 

0 0 

r-k0 0 0 

w o o  0 0 0 0 - 2 r - l ~ ~  0 /3 

0 0  r-%,+v; 0 0 0 

A3= O 0 io/, B =  (. 0 0 0 1: %" a 0 0 0 WO 

0 0 c, 0 w, H 0 0 0 

where 

a = copo1p(,--cg1(+v;+ V ' ) ,  

G = cg'(+y - 1) (r-lv; + V' ) ,  

/3 = --c;l(r-lv;+ V' ) ,  

H = r -k ,  +c;l(r-lv; + V ' )  - $c0p;lp;. 
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We see that (2 .5 )  is a symmetric hyperbolic system. The characteristic equation 
associated with (2 .5 )  is (see appendix) 

det {FA1 + E2A2 + c3A3 - hl} 

= (r-'f2vo + E3wo - A)3 [(r-'f12vo + C3wO - A) ,  - cgk'] = 0, (2.8) 

where k = { ( t 1 ) 2 +  (r-'t2)2+ (t3)2}4. ( 2 - 9 )  

Thus the characteristic roots are seen to be 

a, = r-1g2v,+t3w0, ( 2 . 1 0 ~ )  

SZ, = r-'E2v0 + t3w0 + kc,, (2.lOb) 

(2.10c) 

The two simple roots SZ, and Q3 correspond to the acoustic waves, while the triple 
root SZ, corresponds to the internal gravity waves (inertial waves). It is not expected 
that the acoustic waves will give rise to any instabilities of the basic flow (2 .2 ) ,  therefore 
we shall limit our discussion to the gravity waves. 

It is possible to study the acoustic waves by the same method as we are going to 
apply to the gravity waves, but some additional complications then arise. In fact, for 
the acoustic waves phenomena such as focusing, diffraction and reflexion appear in 
the leading term of the expansion (see Friedlander 1958; Eckhoff 1975). If these 
problems are treated properly, it is possible to show that the leading term of the expan- 
sion for the acoustic waves is always stable. However, since we are going to establish 
only necessary conditions for stability, this lengthy discussion is of no concern. 

The ray equations for the gravity waves associated with the characteristic root 
a, are (see appendix) 

SZ, = r-lFvo + 53w0 - kc,. 

dr /d t  = 0, dqildt = r-lv,, dz /d t  = w,, (2.1 1 a-c) 

dtZ/dt = 0, d p / d t  = 0. (2.1 1 e , f )  

dt'/dt = Y - ' ~ ( T - ' v ,  - v;) - Fw;, ( 2 . 1 l d )  

The solutions of (2 .11)  are readily found to be 

r = r,, qi = qi, + r;l vo(ro) t ,  z = zo + wo(ro) t ,  (2.12 I t -c)  

(2 .12d)  

t2 = t;, t3 = t i 7  (2.12fA.f) 

where r,, qi,, zo, t:, and t: denote the initial values a t  t = 0 .  Thus we see that the rays 
for the gravity waves coincide with the streamlines of the basic flow. This implies that 
the leading term of the generalized progressing-wave expansion for these waves is not 
affected by the presence of boundaries (see appendix and Eckhoff 1975, p. 78). 

The amplitude of the leading term of the generalized progressing-wave expansion 
for the gravity waves is given by (see appendix) 

a, = rr,r,+o,r,+a$r, (2.13) 
14-2 
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along the rays (2.12). Here r,, r2 and r3 are linearly independent eigenvectors 
associated with the triple characteristic root R,, and cr,, v2 and a; are determined by 
the so-called transport equations. It is not difficult to see that here we may choose 

(2.14a) rl = k-l{r-lE2, - (1,0,E;3, O } ,  

(2.14b) 

( 2 . 1 4 ~ )  

With this choice the transport equations become (see appendix) 

dg,/dt = k-2[ - ~ - ~ ( l c ~ ( r - l w ~  - w;) - r-1t2p(a + p ) ]  gl 

+ k-2[ - r-l@?/I +- r-152C3(r-lvo + v;) + ((3)2 w;] g2 

+ k-2[ - .i33(r-1wo + w;) - (r-1[2)2,8 + (53)2 a] r3, (2.15) 

dcr2/dt = k-2[ - r-'FE2a + (r-1E2)2w; - 2r-1[263 w; - (,53)2 w;] g1 

+ k-2[51Fa + (r-1E2)2 (r-lwo - w;) 
- 2r-1[2[3w; + (t3)2 (r-lwo + v;)] g3, (2.16) 

dv3 /d t  = k-2[ - r-1pc2wh + 2r-l[lE3wO - (rr1E2I2 a + (t3)2,81 vl 

+ k-2[[1g3,5 - (r-162)2 (r-lvo - w;) + r-lE2g3w; - 2r-1(p)2 wo] g2 

+ k-2[[1c3w; + r- lc2t3(a + p ) ]  g3. (2.17) 

These transport equations are valid along the rays (3.12). Thus, substituting (2.12) 
into (2.15)-(2.17), we obtain a closed linear system of ordinary differential equations 

da/dt = A(t) (2.18) 

for the amplitude u = {gl, cr2, cr3} of the gravity waves. This is the basic system of 
equations for our stability analysis. In  fact, from Eckhoff (1975) it  follows that 
the basic flow (2.2) cannot be stable unless the trivial solution u = 0 of (2.18) is 
stable for almost every possible choice of the parameters ro, $o,  zo, [ t ,  c: and 6; 
(see appendix). 

3. Discussion of stability 
The system (2.18) is easily seen to be autonomous if and only if 

rC1 [;[r;' vo(ro) - v;(ro)] - f i  wh(ro) = 0. (3.1) 

After a considerable amount of algebra, the eigenvalues of the matrix A in (2.18) 
are in this case found to be 

hl z= 0, A, = ik-lD, A3 = -4, 
where i = J- 1 and D is given by 

(3.2) 

D2 = - (r;lE:)2ap - 2rC2 5: wo wh - [ap- 2r;l w0(r;l wo + w;)]. (3.3) 

In  (3.3) it is assumed that r = ro has been substituted into a, p, vo and wo. 
From the standard theory of stability (see Roseau 1966, p. 22) we conclude that 

a necessary condition for stability of the trivial solution Q = 0 of (2.18) when (3.1) is 
satisfied is that D2 2 0. We shall discuss this condition further below. 
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We now consider the cases where (3.1) is not satisfied. In  these cases (2.18) is a 
non-autonomous system where A( t )  -j. 0 as t -+ + co. By introducing r = In t as a new 
independent variable in (2.18)) we obtain a system where the trivial solution has 
exactly the same stability properties as the trivial solution of (2.18). Asymptotically 
as r++m this transformed system tends to a system with the following constant 

where 

The eigenvalues of the matrix 6, are found to be 

e = rcl  [;(r; l vo - v;) - t: w;. (3.5) 

(3.6) A, = 0, A, = - 4 + {$ - (D/e)2}S, A, = - 8 - {& - (D/e)”>3. 

Again from the standard theory of stability, we conclude that a necessary condition 
for stability of the trivial solution u = 0 of (2.18) when (3 .1)  is not satisfied also is 
that 0 2  2 0. Thus we may conclude that, in order that the trivial solution u = 0 of 
(2.18) shall be stable, it is always necessary that D2 2 0. This implies that the basic 
flow (2.2) cannot be stable unless D2 2 0 for every possible choice of the parameters 
ro, q50, zo, <A, <g and 6: (see appendix and Eckhoff 1975). 

Since 0 2  is a quadratic form with respect to r;l <; and <& it can be transformed to a 
diagonal form D2 = K1 x2 + K2 y2 

by an orthogonal transformation ( r ; l  <$, ti) --f (x, y). The coefficients K~ and K~ are then 
the eigenvalues of the symmetric matrix associated with the quadratic form (3.3) 
and are found to be 

K, = -a~+r;1wo(r~1vo+v~)+(-l)~{(r~1vo)2[(r~1vo+v~)2+w~2]}~ (n = 1 ,2 ) .  (3.8) 

In order that 0 2  2 0 for every possible choice of the parameters To,  q50, zo, ti, (8 and 
it is obviously necessary and sufficient that K ~ ,  K~ 2 0 for every possible value of 

To,  i.e. for a < ro < b. Thus we can conclude that the basic flow (2.2) cannot be stable 

(3.9) 
unless ap 6 r;lvo(Y;l vo+z$) -{(r;lv0)2[(r;lvO+21;)2+ w;2]}* 

holds everywhere in the fluid, i.e. for a < ro < b .  Here we have that 

(3.7) 

up = - (r; v t + V’)  [p;’ph - cc2 ( rc l  vt + V’)] = - N 2 ,  (3.10) 

where N is the analogue of the local Brunt-Vaisala frequency (see Eckart 1960, 
p. 60). 

From the standard theory of stability it is not difficult to show that D2 > 0 is a 
sufficient condition to ensure stability of the trivial solution u = 0 of (2.18). Further- 
more, we see that A ( t )  = 0 in (2.18) if ($ = <: = 0, hence o = 0 is stable in that case. 
In conclusion, we find that the trivial solution u = 0 of (2.18) is always stable when the 
strict inequality holds in (3.9).  

If, on the other hand, equality holds in (3.9),  we find that D = 0 for some values 
of [$, [i with ([$)2 + ([:)2 + 0. In  these marginal cases the eigenvalues (3.2) and (3.6) 
are no longer simple ; therefore a more detailed analysis is needed in order to settle the 
stability problem for (2.18). We consider the following two cases: 

(a) rc1v0 --wh = 0, ( 6 )  r-lv0 - W; + 0. (3.11) 
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I n  case (a )  we see that (2.18) is autonomous when c; = 0. When equality holds in 
(3.9), the trivial solution Q = 0 of (2.18) will therefore be unstable for some choices of 

(3.12) 
&, [g and 6; unless 

This is easily seen to imply that a = p = w; = 0. (3.13) 

When (3.13) is satisfied in case (a), we see that (2.18) is autonomous for any choice of 
t i , lt and 6,”. Thus the trivial solution Q = 0 of (2.18) will be unstable for some choices 

A = 0 for all &&t$ (3.14) of ti, 6; and 6; unless 

This is easily seen to imply that 

= 0 for all &&$. 

a = p = w’ 0 -  - r-1.v 0 -  - 2)’ 0-0. - (3.15) 

In  case (b)  we see that (2.18) is autonomous when 

r-lgt = 6; w;)/(r-lwo- w;). (3.16) 

When equality holds in (3.9), the trivial solution Q = 0 of (2.18) will therefore be 
unstable for some choices of c:, 5,” and 50” unless 

A = 0 for all t i ,  &[,” satisfying (3.16). (3.17) 

This is easily seen to imply that w; = 0. (3.18) 

When (3.18) is satisfied in case ( b ) ,  we see that (2.18) is always autonomous when 
r-lg = 0. Thus the trivial solution a = 0 of (2.18) will be unstable for some choices of 

for all (A,[:. (3.19) 
[A, 6; and c: unless 

This is easily seen to imply that (3.15) must be satisfied, which in case ( b )  is not 
possible. 

I n  conclusion, we have shown that, when equality holds in (3.9), the trivial solution 
a = 0 of (2.18) will be unstable for some choices of ti, 6; and 6,” unless (3.15) issatisfied. 

In  view of the above discussion and the theory in Eckhoff (1975) we have now 
established the following result (when co <: 00). 

THEOREM. In  order that the basic flow (2.2) shall be stable it is necessary that 

AIt;=o = 0 

2 - r-1wo(r1w0 + w;) + ( (r- lw0)2 [(r-lwo + w ; ) ~  + w;~]])* (3.20) 

holds everywhere in the fluid. If equality holds in (3.20) on some set of positive measure, 
it is further necessary for stability of the flow (2.2) that 

Do = v; = w; = p; = V‘ = 0 (3.21) 

holds almost everywhere on this set. 

4. Discussion of the results 
Obviously it is not very restrictive to assume that our basic flow (2.2) does not 

satisfy (3.21) on any set of positive measure; we shall therefore limit our discussion to 
such basic flows. With the notation (3.10), the above theorem then says that the 
basic flow (2.2) is unstable unless 

N2 > - r-lwo(r-%o + w;) + {(r-LUo)2 [(r-lvo + v;)2 + w;2]}4 (4.1) 
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holds almost everywhere in the fluid. The right-hand side of (4.1) is obviously always 
non-negative, therefore the Brunt-Vaisala frequency N has to be a real quantity every- 
where in order that the basic flow (2.2) shall be stable. More specifically, (4.1) implies 

- 2r-1v,,(r-1v0 + wh) > 0 when r-lwo(r-lvo + v;) < 0, ( 4 . 2 ~ )  
that 

0 when ~ - ~ v , ( r - ~ v ~  + w;) >, 0. (4.2b) 

The inequality (4.1) is more restrictive than (4.2) when w; += 0, while (4.1) and (4.2) 
are equivalent when w; = 0. 

N 2  > { 

As an illustration, let us consider the following family of velocity profiles: 

vo = clrp, w, = c2, (4.3) 

where cl, c2 and p are arbitrary constants (cl =j= 0). With (4.3) the criterion (4.2) [or 
equivalently (4. l)] becomes 

-2(1 + p ) c q r 2 ~ - ~  when p < - 1, 

0 when p > - 1 .  
N 2 >  { ( 4 . 4 ~ )  

(4.4b) 

In particular, when p 2 - 1 (i.e. when the inner regions of the fluid do not rotate too 
fast compared with the outer regions) our criterion is completely analogous to the 
stability criterion for the static equilibrium of a compressible A uid in a gravitational 
field (see Eckart 1960, p. 60). This analogy provides an immediate physical inter- 
pretation of our criterion. In  our case as well as in the static-equilibrium case, it is 
possible to show that the perturbations will have an exponential growth when N 2  < 0 
while they will have a linear growth in the marginal case N = 0. 

Under certain restrictions Gans (1975) obtained a Richardson number criterion for 
linear stability of the gas flows considered in this paper. Warren (1975) showed that 
these restrictions may be relaxed if the criterion is slightly modified. In fact, Warren 
(1975) showed that the basic Aow (2.2) is stable if 

N2 > ${(v; - r-lvo)2 + WiZ} (4.5) 

holds everywhere in the fluid. A simple modification of (4.5) reads 

N2 > - T-%~(T- 'V~+ v;) + ${(r-'v0 + v;)' + w;'} + (r-1vo)2. (4.6) 
We see that 

[ *{ ( +VO + v;)2 + w;2} + ( r--1v0)2]2 

- (r-lvo)2[(r-lvo + v p +  w;2] = [*{(r-lw, + v;y+ up} - (r-lvo)2]2 2 0. (4.7) 

This shows that the necessary condition for stability (4.1), as expected, is never more 
restrictive than the sufficient condition (4.5). Furthermore, (4.7) shows that the 
necessary condition (4.1) and the sufficient condition (4.5) coincide if and only if 

(r-lvo + v;)2 + W ( y  - 4(r-1v0)2 = 0. (4.8) 

Thus if the basic flow (2.2) satisfies (4.8), it is stable if and only if (4.5) is satisfied. On 
the other hand, if the basic flow (2.2) does not satisfy (4.8), there is a gap between 
the sufficient condition (4.5) and the necessary condition (4.1) where the stability 
properties of the basic flow (2.2) still are unknown. 
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We note that there are several classes of velocity profiles which satisfy (4.8). This 
is easily verified for the following: 

v, = c1 rn, w, = c2 rn + c3, (4.9) 

where cl, c2, c3 and n are arbitrary constants satisfying 

n2cg+{(n+ 1)2 -4}c~  = 0.  (4.10) 

Thus we see that if we choose cl, c2 and c3 arbitrarily there are two possible values for n:  

(4.11) 

In particular, if we choose c2 = 0, n is equal to 1 or - 3 from (4.11) for any choice of 
c1 and c3. 

In  view of the above discussion we see that the gap between the sufficient condition 
(4.5) and the necessary condition (4.1) can be made arbitrarily smaII if the velocity 
profiles are restricted to be sufficiently close to rigid-body rotation, i.e. if w, is small 
compared with vo and vo is close to c1 r .  This explains why %he asymptotic analysis done 
by Gans (1975) leads to a criterion giving both necessary and sufficient conditions 
for stability. 

Howard (1973) showed that the basic flow ( 2 . 2 )  is stable to axisymmetric perturba- 
tions if 

(4.12) N 2  > twi2 - 2r-1vo(r-1vo + vh) 
holds everywhere in the fluid. A simple modification of (4.12) reads 

N2 > ${(vi - r-'vo)2 + wA2} - $(v,!, + 3r-lwO)2. (4.13) 

This shows that (4.12), as expected, is never more restrictive than (4.5). Furthermore 
(4.13) shows that (4.5) and (4.12) coincide if and only if 

v,!, + 3 r - l ~ ~  = 0, i.e. vo = cr-3 where c = constant. (4.14) 

Since Howard (1973) restricted the perturbations to be axisymmetric, a comparison 
of the conditions (4.1) and (4.12) is of secondary interest only. However, we see that 

[fwA2 - r-lvo(r-lvo + v;)l2 - (r-1vo)2 [(r-lv, + v ; ) ~  + wA2] 

= &wA2[&wh2 - 2r-lvO(vh + 3r-lv0)]. (4.15) 

Thus we obtain the following results: (4.1) is more restrictive than (4.12) if and only if 

awA2 - r-lvo(r-lw0 + w;) < 0 (4.16) 

or twhz - 2r-bO(wh + 3r-bo) < 0 and w,!, =# 0. (4.17) 

Furthermore, (4.15) shows that (4.1) and (4.12) coincide if and only if 

and either 

(4.18) 

(4.19) 

or $wh2 - 2r-1w0(v;, + 3r-4,) = 0. (4.20) 
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Appendix. The generalized progressing-wave expansion method 
For symmetric hyperbolic systems an extensive literature exists (see Courant & 

Hilbert 1962). The generalized progressing-wave expansion method enables us to  
calculate approximate solutions of such systems. The method is a generalization of 
the WKB method, but in contrast to  that method the error made by truncating the 
generalized progressing-wave expansion is completely understood. We shall give here 
a very brief discussion of a special version of the generalized progressing-wave expan- 
sion method and its application to stability problems. Further details can be found 
in Eckhoff (1975). 

We consider a linear symmetric hyperbolic system of the form 
n 

v = 1  
LU = ut+ C. A ’ U ~ ~ + B U  = 0, 

where u = {ul, ..., urn> are the dependent variables (i.e. the unknown functions), 
while B and AY (v = 1, . . , , n)  are given m x m matrices with real coefficients which may 
depend on the independent variables t (time) and x = {q, .. ., xn) (space). The matrices 
A (v = 1 ,  . . . , n) are assumed to  be symmetric. 

The formal expansion 

(A 2) 
“ 1  

j=o (iw)’ 
u(x, t )  = -. aj(x, t )  exp {iw@(x, t ) )  

is a generalized progressing-wave solution of (A 1)  if it satisfies (A 1 )  to every order 
in the frequency parameter w .  The scalar function @(x, t )  is called the phase function, 
the m-dimensional vector function a,(x,t) is the amplitude of the leading term, and 
the m-dimensional vector functions aj(x, t )  ( j  = 1,2,  ...) are called the distortion 
coeficients. 

By substituting (A 2) into (A 1)  and equating coefficients, we obtain the following 
equations: 

(A 3) 

I #, ,A aj+Laj-l = 0 (j = 1 ,2  ,... ). 

Since we assume that a, + 0, (A 3) implies that  the phase function must satisfy the 
characteristic equation 

det $ t I +  C. $,,Av = 0 ,  

which is a partial differential equation of order 1 and degree m. On introducing the 
notation n 

(A 5 )  I .=”I 

A = - d t ,  e =  q55v (Y = 1,  ..., n), E = C. FAY, (A 6) 
v = 1  

(A5) shows that h must be an eigenvalue of the symmetric matrix E. If 

h = Q(x, t , p ,  ..., p) 

$t + Q(x, t ,  A,, - * .  9 An) = 0. 

is an eigenvalue of E, we see that (A 5 )  is satisfied when 

(A 7) 

The eigenvalues of the matrix E are therefore called the characteristic roots associated 



410 K .  S. Eclchoff and L. Storesletten 

with (A 1) .  The Cauchy problem for (A 7) may be solved uniquely by the method of 
characteristics, i.e. by solving the ray equations associated with (A 7)  (see Courant & 
Hilbert 1962, chap. 2): 

dxv/dt = aQ/aF, dp/dt = -aQ/axV (V = 1 ,  ..., n). (A 8) 
To the different characteristic roots there correspond different families of phase 
functions which again correspond to the different classes of waves described by (A 1) .  

Now let R be a fixed eigenvalue of multiplicity p ,  say, and suppose that q5 satisfies 
(A 7) .  Equation (A 3) then shows that 

B 

2=1 
a, = x uz rz, 

where rl, . . . , rB are orthonormal eigenvectors associated with the eigenvalue R, and 
u,, . . . , up are scalar functions to be determined. Upon setting j = 1 in (A a), we have 

This may be considered as a system of linear algebraic equations for a,. It has a 

(A 11)  
solution if and only if r,.La, = 0 (1 = 1,  ..., p ) .  

Substituting (A 9) into (A 11) yields the following system of partial differential 
equations for the crl (1 = 1, .. . , p ) :  

n r  P 

v = l  k = l  k = l  
(ai1t.t x c ( r l -AYrk)  ( g k ) s , +  (r l  * Lrk) gk = O. (A 12) 

From the definition of R and rl ( I  = 1, . . . , p )  it follows that 

0 when 1 += k, 
aQ/ag when 1 = k. 

rl . AYrk = 
(A 13a) 

(A 13b) 

The system of equations (A 12) may therefore be interpreted as a system of ordinary 

d P 
- rl = - x (rl. Lr,)uk 

differential equations 

at k = l  

along the rays determined by (A 8). Equations (A 14) are called the transport equations 
for the hyperbolic system (A 1) .  

When the amplitude a, has been calculated from the transport equations (A la), 
the distortion coefficients aj ( j  = 1,2,3,  . . .) may be calculated analogously from (A 4) 
(see Ludwig 1960, p. 479; Eckhoff 1975, p. 48). Thus all the terms in the expansion 
(A 2) may be calculated by solving ordinary differential equations and algebraic 
equations only. The expansion (A 2) is valid up to the nearest caustic, i.e. the points 
where, for instance, the rays cross each other, and as long as the rays do not hit the 
boundaries. Crossing of rays means that focusing phenomena appear in the leading 
term of the expansion (A 2). In  Eckhoff (1975, p. 18) it is shown that caustics due to 
focusing of the wave never appear if and only if Q is a linear function with respect to 
the variables cl, . . . , tn, and that in these cases the transport equations (A 14) become 
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We see that (A 8) and (A 15) constitute a closed system of ordinary differential 
equations which determine the leading term in the generalized progressing-wave 
expansion (A 2). 

From the theory in Ludwig (1960) it  follows that the expansion (A2) for 
sufficiently small t is an asymptotic expansion as w +co. Eckhoff (1975, $3 7 and 8) 
showed that in general the distortion coefficients aj in (A 2) will not be uniform with 
respect to t ,  but that the leading term in (A2)  will be uniformly valid with respect 
to t .  If the rays never hit the boundaries, this in particular means that on any finite 
time interval the leading term in (A 2) is an approximation of a family of exact solutions 
of (A 1) where the error can be made arbitrarily small by choosing w sufficiently large. 
From this we may conclude that if the trivial solution of (A 15) is unstable then the 
trivial solution of (A 1) is necessarily unstable. 
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